Introduction to Elm

About me

- Started as PHP dev
- Used JavaScript as primary language for 10 years (2007 - 2016)

- Web and app development
- Frameworks
- Embedded systems

- At present working with Elm, Go, C
Other interests

Privacy - Encryption, Tor
Unix

Hacking

Coffee

The question is not Why would you use Elm? but
Why aren’t you using it?

JavaScript

- Current state of JavaScript app development is overly complex.

- Need to learn and integrate 3rd-party tools to try and control state and
minimize bugs.
- Too many apps feel cobbled together and not well architected.

- No compiler support.

N 0]0)

Elm

+ No runtime exceptions!*
+ Elm is a pure functional language. It is easy to reason about the data and the

application.

+ Refactoring is easy. By contrast, refactoring even seemingly simple code in

JavaScript is error-prone and risky.
+ The compiler has your back!

+ Meaningful (and verbose) error messages.

* Well, mostly. There are some exceptions, i.e., division by zero and bad RegExps that the compiler isn’t catching right now.

Thinking functionally will make you
a better programmer!

[l

This presentation will be covering...

Basic functional programming primer
Types
Extensible records

W

The Elm architecture

This presentation won't be covering...

Interoperability with JavaScript
Subscriptions

Passing in values at runtime
Tooling

Vi W N

Elm at scale

-

Let’s get started...

Why is functional programming
a good thing?

Pure functions
Function composition
Easy to reason about
Easy to debug

Easy to understand

Forward function application

query

Dict.foldl fmtEquality ""

String.dropRight 5
Request.Consumer.query
Http.send Fetch Consumers

Function composition

Http.send Fetch Consumers
<< Request.Consumer.query

<< String.dropRight 5
<< Dict.foldl fmtEquality ""
<| query

Also...

You get immutable values, static types and currying for free.*

* Not native to JavaScript.

FP Primer

Terms

e Arity : The number of arguments that a function takes.

e Higher-order Function : A function that can take another function as an argument and can also
return a function.

e function Composition : Combining simple functions to build more complicated ones. Unix
pipelines.

e Side Effects : Changes in state that do not depend on the input functions.

Terms, continued

e Pure Function : A function without side effects. A pure function has no free variables.
e Currying : Translating a function with multiple arguments into a sequence of function calls that

take one argument.
e Partial Application : Fixing (binding) a number of arguments to a function to produce another

function with a smaller arity.

programmers : List (List String)

programmers =
[["Ken", "Thompson", "American", "B"]
, ["Dennis", "Ritchie", "American", "C"]
, ["Bjarne", "Stroustrup", "Danish", "C++"]
, ["Evan", "Czaplicki", "American", "Elm"]
, ["Rob", "Pike", "Canadian", "Go"]
, ["Brendan", "Eich", "American", "JavaScript"]
, ["Guido", "van Rossum", "Danish", "Python"]

programmers |> getlLanguages

[HBH s HCH s HC++H s HE'LmH s HGOH s lljavascr-iptll s HPythonH]

getlLanguages =
List.map

(Maybe.withDefault ""
<< List.head
<< List.reverse

makelList =
List.map
(\r => 13 [J[r |>text])

main

ul []

(makelist
<< getlanguages
<| programmers

getNationality a =
List.filter
(\r -> getAmericans =
(== "American" |> getNationality

(List.drop 2 r
|> List.head
>> Maybe.withDefault "" getDanes =

) "Danish" |> getNationality

a

main =
div []
[text
<< toString
<< List.reverse

main =
div []
[text
<< toString
<< getlLanguages

<< getlLanguages
< (\p —>

List.concat
[p |> getAmericans
, P |> getDanes
]

<< getDanes
<| programmers

)

<| programmers

Hello World

Hello, World!

module Hello exposing (..)
import Html exposing (text)

main =
text "Hello, World!"

1. elm reactor

2. Open browser
3. Click on file

And here’s a list...

module Main exposing (..)

import Html exposing (Html, div, hl, 1i, text, ul)
import Html.Attributes exposing (style)

main =
div [] [
hl [] ["Foundational programmers" |> text]
, ul [1 [
1i [] ["Ken Thompson" |> text]
, Ui [] ["Brian Kernighan" |> text]
, L[
[("background-color", "blue") , ("font-weight", "bold")] |> style]
["Dennis Ritchie" |> text]

Types

Union types

type Msg type Bool

Add = True
Delete User | False
Get User

Post User

Put User

Union types with type variable(s)

type Maybe a type Result error value
= Nothing = Ok value

| Just a | Err error

Type alias

type alias Name type alias Message a =
= String { code : String
, body : a
type alias Age }

= Int

type alias Message a =
{ code : String
, body : a
+

Message "1337" "foo" |> toString >> text

= Message "1337" [1, 2, 4]
(Message Ill337ll) [Ilall, Ilbll, "C":l

toString m |> text
n |> toString >> text

<< toString
<< ("1337" |> Message)
<| (Ilfooll, Ilbarll)

Extensible Records

Extensible records are good to use when scaling
your app, as it narrows your types.

That sounds great, but what does that mean?

type alias BarEmployee =
{ last : String
, first : String user : BarEmployee -> String
} user user =
user.first
type alias Model = ++ "M
{ user : BarEmployee ++ user.last
, city : String
, state : String
}

div [] [model.user |[> user |> text]

user : Model -> String

user model =
model.user.first
++ n n

++ model.user.last

main =
let

model : Model

model
user =
last = "Kelly"
first = "Charlie"

h

city = "Philadelphia"
state = "PA"

in
div [] [model |> user |[> text]

main

alias BarEmployee =
{ last : String
, first : String
}

alias BarManager =
{ last : String
, first : String
, age : Int
, location :

}

String

alias Model =

{ user : BarManager
, city : String

, state : String

h

: BarEmployee -> String
model =
model.user.first

++ n n

++ model.user.last

let

model = user | BarManager < pseudo-code!

in
div [] [model.user |[> user |[> text]

{ n | last :
-> String

user user =
user.first
++ n n

++ user.last

String, first : String }

div [] [model.user |[> user |> text]

This is better yet. Now, any record
type that contains a last and a
first field can be used.

Also, this makes testing much easier,
as the whole model doesn’t need to
be mocked in order to test a function
that only pertains to a (user) name!

Let’s add some behavior!

The Elm Architecture

type alias Model

= Int

type Msg

update
update msg model =

view :
view model =

init
init

main

= Decrease
| Increase

Msg -> Model -> (Model, Cmd Msg)

case msg of
Decrease ->
(model |> Bitwise.shiftRightBy 1) ! []

Increase —>
(model |> Bitwise.shiftLeftBy 1) ! []

Model -> Html Msg

div []

[h3 [1 ["Incremental bit shifting" |> text]
button [Decrease |> onClick] ["Decrease exponentially" |> text]
button [Increase |> onClick] ["Increase exponentially" |> text]
span [] [text << toString <| model]

)

Llu

(Model, Cmd Msg)

32 ! [1]

Html.program { init = init, update = update, view = view, subscriptions = always Sub.none }

C——— ———— ——-—' ” — R,

| |
| |
i 1 Render view n
1
|
|
|
|

2 Trigger message e.g. Expand

|
' 3 Send message with the current state _ |

|
:(4 Return updated state and command |
'S Render view

|

https://www.elm-tutorial.org/en/02-elm-arch/04-flow.html

What time is it?

It's Demo Time!!

My links

https://github.com/btoll
https://github.com/btoll/elm-remotepager-demo

http://www.benjamintoll.com

http://www.benjamintoll.com

References and further reading
https://elm-lang.org/

https://www.elm-tutorial.org/en/ (the first part, not the when the app is built)

http://[package.elm-lang.org

https://github.com/rtfeldman/elm-spa-example

Anything by Evan Czaplicki, Richard Feldman and the folks at NoRedInk

https://guide.elm-lang.org/
https://www.elm-tutorial.org/en/
http://package.elm-lang.org
https://github.com/rtfeldman/elm-spa-example

The End

R

